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Abstract: We investigate hard radiation emission in small-angle transplanckian scatter-

ing. We show how to reduce this problem to a quantum field theory computation in a

classical background (gravitational shock wave). In momentum space, the formalism is

similar to the flat-space light cone perturbation theory, with shock wave crossing vertices

added. In the impact parameter representation, the radiating particle splits into a multi-

particle virtual state, whose wavefunction is then multiplied by individual eikonal factors.

As a phenomenological application, we study QCD radiation in transplanckian col-

lisions of TeV-scale gravity models. We derive the distribution of initial state radiation

gluons, and find a suppression at large transverse momenta with respect to the standard

QCD result. This is due to rescattering events, in which the quark and the emitted gluon

scatter coherently. Interestingly, the suppression factor depends on the number of extra

dimensions and provides a new experimental handle to measure this number. We evaluate

the leading-log corrections to partonic cross-sections due to the initial state radiation, and

prove that they can be absorbed into the hadronic PDF. The factorization scale should

then be chosen in agreement with an earlier proposal of Emparan, Masip, and Rattazzi.

In the future, our methods can be applied to the gravitational radiation in trans-

planckian scattering, where they can go beyond the existing approaches limited to the soft

radiation case.
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1 Introduction

Scattering at center-of-mass (CM) energies exceeding the quantum gravity scale (trans-

planckian scattering, or T-scattering, for short) is an exotic process of significant theoreti-

cal interest. In particular, it provides a laboratory to study the black hole information loss

paradox. Microscopic black hole formation and its subsequent evaporation is expected for

impact parameters b of the order of the Schwarzschild radius RS of a black hole of mass√
s [1–4]. The detailed description of how this happens depends on the unknown underlying

theory of quantum gravity and is at present out of reach. On the other hand, large impact

parameters b ≫ RS correspond to elastic small-angle scattering, whose amplitude can be

predicted on the basis of General Relativity alone. It is given by eikonalized single-graviton

exchange [1, 5–7]. Computing the corrections in b/RS to the elastic scattering, one hopes

to learn about the strong inelastic dynamics at b ∼ RS [8–12].
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Figure 1. The νp T-scattering in cosmic ray physics (left) and the pp T-scattering at the LHC

(right). In both cases the dominant process is small-angle elastic scattering between partons, giving

jet(s)+anything in the final state. The zigzag line denotes the eikonal 2→ 2 scattering amplitude.

p p

Figure 2. Multiple partonic interactions, in which more than one pair of partons exchange gravi-

tons, are suppressed. This is because the eikonal phase vanishes very quickly with the transverse

separation, and it is unlikely to find a second pair of partons for which this phase is large.

T-scattering is also interesting phenomenologically. If large extra dimension scenarios

of TeV-scale gravity [13] are realized in Nature, this process could be observed at the LHC

and other future colliders [14, 15], as well as in collisions of high-energy cosmic neutrinos

with atmospheric nucleons [16, 17]. In these scenarios the total T-scattering cross section

is finite, grows with energy, and is dominated by calculable small-angle scattering between

partonic constituents [15, 17], see figure 1. The subleading black hole production cross

section at present can only be estimated from geometrical arguments.

In spite of the small scattering angle, the typical momentum transfer in these scattering

events is well above the QCD scale, and the typical impact parameter is much smaller than

the proton size, which sets the typical distance between two uncorrelated partons inside the

proton. It is unlikely that a multiple parton interaction, figure 2, will occur in the same T-

scattering. Thus it is clear that the partonic picture should be applicable at leading order in

the QCD coupling. In other words, we can compute the total cross section via a convolution

of the partonic cross section and the parton distribution functions (PDF) f
(
x, µ2

F

)
.

Several interesting questions arise when one tries to think what happens beyond the

leading order. For example, it’s not known how to treat events of the type shown in

figure 3, where one of the colliding partons (say a quark) radiates a gluon just before the

– 2 –
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Figure 3. Initial state radiation processes, when a quark emits a gluon just before participating

in T-scattering, are expected to play a role. They give logarithmic corrections to the cross section,

which determine the optimal factorization scale µF of the process.

collision. Now the quark-gluon separation is not necessarily large, and the pair may scatter

coherently. What is the correct description of such rescattering processes, and what is the

resulting effect on the total T-scattering cross section?

A related question is: which factorization scale µF should we choose in the computation

of the total cross section? As is well known, QCD-initiated processes have significant

higher-order logarithmic corrections, associated with the collinear QCD radiation off initial

partons. By choosing µF appropriately, these corrections can and should be reabsorbed

into the PDF. As we will see below, the familiar choice µ2
F ∼ −t is likely not the right one

for the T-scattering. If so, we would like to see this explicitly.

The purpose of this paper is to answer the above-mentioned questions. We will be

focusing on the QCD radiation since it is the dominant phenomenological effect due to the

relative largeness of αs. However, our methods are equally applicable to the radiation of

photons or any other spin 1 gauge bosons. We also hope that these methods may later prove

useful in the more complicated problem of gravitational radiation emitted in T-scattering,

and in particular to provide an alternative to the existing computations which are limited

to the case when the emitted radiation is soft [8, 18].

The paper is organized as follows. In section 2 we review the eikonalization of small-

angle 2 → 2 partonic scattering amplitude, following [15, 17]. To keep close contact

with phenomenology, we work in the context of large extra dimension scenarios with the

quantum gravity scale around a TeV. A key feature of the extra-dimensional situation with

n compactified dimensions is the appearance of a new length scale bc, which sets the range

of a typical T-scattering interaction. In D-dimensional Planck units, D = 4 + n, we have

bc ∼ s1/n, RS ∼ s1/[2(n+1)],

so that bc ≫ RS in the deep transplanckian regime
√
s≫ 1. We also present an alternative

computation of the 2→ 2 amplitude, based on generalizing to D dimensions the early idea

of ’t Hooft [1], who considered the small-angle T-scattering by solving the Klein-Gordon

equation for one particle propagating in the classical gravitational field of the other particle.

In section 3 we start discussing small-angle T-scattering with hadronic initial states,

as in figure 1, in which QCD effects are expected to play a role. According to the existing

– 3 –
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proposal of Emparan, Masip and Rattazzi [17], the total cross section for these processes

must be computed with the following prescription for the PDF scale µF :

µF (q) =

{
q if q < b−1

c ,

q
1

n+1

(
b−1
c

) n
n+1 if q > b−1

c ,
(1.1)

where q ≡
√
−t. For sufficiently high momentum transfers this deviates from the familiar

prescription µF ≃ q. An intuitive justification for this scale in terms of the typical impact

parameter was given in [17], but we would like to check it via a direct computation.

The first step is to be able to evaluate the amplitude for small-angle T-scattering

accompanied by collinear QCD radiation. In the resummation approach [15, 17], this

computation seems prohibitively difficult even for one-gluon emission. Indeed, the eikonal

amplitude for quark-quark T-scattering is a sum of an infinite number of crossed ladder

gravition exchanges. The outgoing gluon may be attached anywhere on the quark lines,

both external and internal. Moreover, in the q → q+g splitting, the emitted near-collinear

gluon is not necessarily soft, and thus may also exchange gravitons. The number of dia-

grams to resum skyrockets.

’t Hooft’s approach is a much better starting point. As we point out, it can be easily

‘upgraded’ to the case when radiation is present, provided that only one of the two colliding

particles radiates. This covers completely lepton-quark scattering and is an important

special case for quark-quark scattering. The idea is very simple. In the 2 → 2 scattering,

’t Hooft treated one particle classically, the other one quantum mechanically. The only

new twist is to allow the quantum particle to radiate. In other words, we should treat the

non-radiating parton classically, while the radiating parton and the gluonic radiation field

with which it interacts quantum mechanically.

This trick reduces the problem to a quantum field theory computation in the classical

gravitational background produced by a relativistic point particle, the Aichelburg-Sexl (AS)

shock wave [19]. In section 4 we develop the necessary formalism. We first consider the

simplest perturbative quantum field theory in the AS background: a scalar field with cubic

self-interactions. We introduce a diagram technique for computing arbitrary transition

amplitudes in this theory, which turns out to be closely related to the standard rules of

light-cone perturbation theory in flat space. We then explain the changes necessary for

the gluon field and for the scalar-gluon interactions, and compute the one-gluon emission

amplitude as an example.

Notice that while fermionic matter fields can be considered analogously, we do not

include them in this work in order to keep technical details to a minimum. Thus we stick

to a toy model in which the partonic constituents of colliding hadron(s) are scalars.

Armed with the knowledge of gluon emission amplitudes, in section 5 we attack the

question of QCD corrections to T-scattering. For definiteness and simplicity, we consider

the gravitational analogue of the DIS: a transplanckian electron-proton collision. The

observable is the total cross section as a function of the Bjorken x and the transverse

momentum transfer q, in the small-angle region |q| ≪ √s. At leading order (LO) in the

QCD coupling αs, the partons scatter elastically on the electron (no gluon emission). At
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next-to-leading order (NLO), we demonstrate the appearance of logarithmic corrections

whose scale is precisely the µF (q) from eq. (1.1). We find that the cross section factorizes,

in the sense that these logarithms appear multiplied by the DGLAP splitting functions,

and can be reabsorbed into the PDFs. Finally, we are able to show that this factorization

holds to all orders in αs, in the leading-logarithm approximation (LLA).

Our computation gives an explicit check for the validity of the partonic picture for the

T-scattering. Moreover, it gives an interesting and unexpected explanation for why the

PDF scale deviates from the usual µF ∼ q. It turns out that rescatterings like in figure 3

suppress the initial state QCD radiation at transverse momenta q & b−1
c . As a result the

transverse momentum distribution of emitted gluons has the form:

dN

d2q
= f(q)

(
dN

d2q

)

0

, (1.2)

where
(
dN/d2q

)
0
∼ 1/q2 is the standard distribution without rescattering, and f(q) is a

function interpolating between 1 for q ≪ b−1
c and 1/(n + 1) for q ≫ b−1

c . Logarithmic

corrections to the cross section are obtained, as usual, by integrating eq. (1.2) over the

gluon phase space, and the scale of these logarithms is a geometric mean of q and b−1
c as

in eq. (1.1).

Notice that one could imagine other distributions giving rise to logµF (q), for example

the standard 1/q2 with a sharp cutoff at b−1
∗ . In this sense eq. (1.2) contains more infor-

mation than the identification of the correct factorization scale. The predicted suppression

of the initial state radiation is n-dependent and could in principle be used to determine

the number of extra dimensions.

A crucial insight into the physics of radiative processes is obtained by going into the

impact parameter representation. In this picture, we find that the scattering is described

via a multi-particle wavefunction of the virtual state (parton+radiated quanta), which is

multipled by individual eikonal factors when crossing the shock wave. This interpretation

suggests a possible generalization of our formalism to the case when both colliding partons

radiate, which we discuss in section 6.

In conclusion, this work shows that factorization holds for QCD effects in T-scattering,

and that the factorization scale has a nontrivial dependence on q2, in agreement with the

earlier proposal of ref. [17]. The novelty is that we arrive at these results by a concrete

computation, and that we derive the modified distribution of the initial state radiation

due to rescattering effects. The new distribution should be now incorporated into a ‘trans-

planckian parton shower algorithm’, to be used in Monte-Carlo simulations of T-scattering.

We will come back to this issue in a future publication.

2 Review of the eikonal approach to T-scattering

In this section we review the basics of small angle T-scattering in the eikonal approximation.

We will work within the large flat extra dimensions scenario of TeV-scale gravity [13],

see [20] for the current experimental constraints.

– 5 –
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Figure 4. The 2 → 2 small angle T-scattering amplitude is given by a sum of crossed-ladder

graviton exchanges.

Consider then two transplanckian massless Standard Model (SM) particles, thus con-

fined to the SM 3-brane, which scatter due to the D-dimensional gravitational field,

D = 4 +n, n being the number of large extra dimensions, n ≥ 2 for phenomenological rea-

sons. For now we ignore all interactions except for gravity. In particular, we suppose that

the colliding particles are not charged, and thus cannot emit photons or gluons. We are in-

terested in the scattering amplitude for small momentum transfer −t/s≪ 1. In this regime

gravitational radiation is also suppressed (see [15]), and we have elastic 2→ 2 scattering.

2.1 Resummation

The most direct way to compute the amplitude is by resumming the crossed ladder graviton

exchange diagrams [15, 17], see figure 4. For small momentum transfer, exchanged gravitons

are soft, and well-known simplifications occur in the vertices and the intermediate state

propagators, allowing the resummation. The first term in the series, the one-graviton

exchange, is given by

ABorn(q) = − s2

Mn+2
D

∫
dnl

q2 + l2
, (2.1)

where q is the momentum transfer, which lies mostly in the direction transverse to the

beam: t ≈ −q2. The D-dimensional Planck scale MD ∼ 1 TeV is normalized as in [15, 20].

The divergent integral over the extra dimensional momentum l needs to be treated properly;

see below. The second term in the series, the sum of two one-loop diagrams, turns out to

be equal to a convolution of two Born amplitudes:

A1-loop(q) =
i

4s

∫
d2k

(2π)2
ABorn(k)ABorn(q− k) ,

and this pattern continues to higher orders. As a result the series can be summed by going

to the impact parameter representation. The amplitude acquires the eikonal form:

Aeik(q) = ABorn +A1-loop + . . . = −2is

∫
d2b e−iq.b

(
eiχ − 1

)
, (2.2)

with the eikonal phase χ given by the Fourier transform of the Born amplitude in the

transverse plane:

χ(b) =
1

2s

∫
d2q

(2π)2
eiq.bABorn(q) . (2.3)

– 6 –



J
H
E
P
1
2
(
2
0
0
9
)
0
3
6

0 2 4 6 8 10

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

F2HyL

0 2 4 6 8 10

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

F3HyL

0 2 4 6 8 10

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

F4HyL

0 2 4 6 8 10

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

F5HyL

Figure 5. The functions Fn(y) for n = 2, 3, 4, 5: absolute value (solid), real part (dashed), imagi-

nary part (dot-dashed). Notice that ℑmFn(0) <∞ for all n ≥ 2, implying finite total cross section.

On the other hand, ℜe Fn(0) <∞ for all n ≥ 3. See [15].

To evaluate the eikonal phase, we need to regulate the divergent Born amplitude (2.1).

In [15], dimensional regularization was used, and it was argued that since the subtracted

divergent terms are local, they do not affect the small angle scattering amplitude.1 The

eikonal phase was found to be:

χ(b) =

(
bc
|b|

)n

, bc =
1

MD

[
(4π)

n
2
−1Γ(n/2)

2

]1/n(
s

M2
D

)1/n

. (2.4)

The corresponding amplitude is then given by:

Aeik = 4πs b2cFn(bc|q|) ,

Fn(y) = −i
∫ ∞

0
dxxJ0(xy)

[
eix

−n − 1
]
. (2.5)

The functions Fn(y) are plotted in figure 5 (see also figure 2 of [15]). Their most salient

features are as follows. At moderate y . 1, we have Fn(y) = O(1),2 the integral (2.5)

receiving contributions from x ∼ 1. On the other hand, for y ≫ 1 the integral has a saddle

1This was later confirmed in [21] by using in (2.1) a physical regulator exp(−k2w2), with w interpreted

as an effective width of the SM brane, w ∼TeV−1. It was found that the resulting eikonal phase coincides

with (2.4) for b & w, while for b . w it varies slowly (logarithmically). The eikonal amplitude then indeed

agrees with (2.5) in the small scattering angle region. The same conclusion was also reached in [22] using

a sharp cutoff.
2For n = 2 there is mild logarithmic growth.
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point at x∗ = (n/yn)
1

n+1 ≪ 1, and the amplitude decays:

|Fn(y)| ≃ n
1

n+1

√
n+ 1

y−
n+2

n+1 (y ≫ 1) .

The appearance of the scale bc is a peculiar feature of T-scattering for n > 0. Since

the amplitude is the largest in the region y . 1, a typical scattering will have |q| . b−1
c .

Yet a classical particle trajectory for these q is undefined, all impact parameters b ∼ bc
contributing to the scattering. On the other hand, for bc|q| ≫ 1 (y ≫ 1) the scattering

is dominated by a characteristic impact parameter b∗ = bcx∗, corresponding to the above

saddle point. In this case the particle trajectory is well defined and the T-scattering is

truly semcilassical, with many gravitons being exchanged.

2.2 ’t Hooft’s method

An alternative computation of the small angle T-scattering amplitude can be given us-

ing a method due to ’t Hooft [1], originally formulated in four dimensions. In this ap-

proach, particle B scatters on the classical gravitational field created by particle A. In

other words, particle A is treated as a classical point particle, while particle B is treated

quantum-mechanically.

Consider then the gravitational field of a relativistic classical point particle A of energy

EA propagating in the positive z direction. This field is the D-dimensional generalization

of the AS [19] shock wave:

ds2 = −dx+dx− + Φ(x⊥)δ(x−)(dx−)2 + dx2
⊥ . (2.6)

Here x± = t± z, while x⊥ denotes D − 2 transverse directions. Einstein’s equations with

the lightlike source

T−− = EA δ(x
−)δ(D−2)(x⊥)

reduce to one linear equation for the shock wave profile Φ:

− ∂2
⊥Φ = 16πGDEA δ

(D−2)(x⊥) . (2.7)

The solution of this equation coincides with the eikonal phase (2.4) per unit of particle

B energy:

Φ(x⊥) = E−1
B χ(x⊥) . (2.8)

The right-moving particle B is confined to the SM 3-brane, and its wavefunction solves

the Klein-Gordon equation in the metric induced on the brane by the shock wave (2.6). At

x− < 0 the wavefunction is a standard plane wave

φ(x) = exp(ipB.x) = exp(−iEBx
+) . (2.9)

– 8 –
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p+
At

Figure 6. The gravitational field of particle A (the AS shock wave) is concentrated on the null

plane x− = 0. Geodesics crossing this field experience an x-dependent shift of the x+ coordinate.

This is the same shift as in eq. (2.11).

The metric (2.6) has a strong discontinuity at x− = 0. To solve the Klein-Gordon equa-

tion across the discontinuity, it is convenient to make a coordinate transformation [3, 23]

x− = x̃− ,

x+ = x̃+ + θ(x−)Φ(x̃i) + x−θ(x−)
(∂Φ(x̃i))

2

4
, (2.10)

xi = x̃i +
x−

2
θ(x−)∂iΦ(x̃i) .

In the x̃ coordinates the metric is continuous across x− = 0. When crossing the shock

wave, the wavefunction remains continuous in these coordinates. This means that for

small positive x− we have:

φ(x̃) = exp
(
−iEBx̃

+
)

= exp
[
−iEB(x+ − Φ(x)

]
. (2.11)

The x-dependent shift of the x+ coordinate has a well-known classical origin: it is related

to the time delay experienced by geodesics crossing the AS shock wave, see figure 6.3

We now see from (2.11) that the wavefunction immediately before and after the collision

is related by a pure phase factor exp(iEBΦ(x)), which via (2.8) is identical with the eikonal

phase factor in (2.4). An alternative derivation, by directly solving the Klein-Gordon

equation, is given in appendix A.

Thus, ’t Hooft’s method is equivalent to the resummation. This is not surprising,

because the external field approximation in quantum field theory resums precisely crossed

ladder diagrams [24]. The AS shock wave is a solution to both linearized gravity and the

full nonlinear Einstein’s equations. In retrospect, this explains why the diagrams in which

gravitons emitted by particles A and B interact did not have to be taken into account

in the resummation method. See [7] for a detailed discussion and comparison of the two

methods in D = 4.

3We would like to stress the auxiliary character of the ex coordinates, in which the metric is not manifestly

flat for ex− > 0, nor even manifestly asymptotically flat, which makes these coordinates unsuitable for

defining asymptotic outgoing states. The asymptotic states should be described in the x coordinates, that’s

why in the last equation in (2.11) we reverted to them.

– 9 –
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Still, an attentive reader will notice two small differences between the two results.

First, eq. (2.4) contains −1 under the integral sign, while ’t Hooft’s method gives a pure

phase. This is the usual difference between the S- and T-matrices, S = 1 + iT . Second,

the amplitude (2.4) is relativistically normalized, while in the new derivation normalization

needs yet to be determined.

Modulo the normalization issue (which will be resolved in section 4.1 below), the power

of ’t Hooft’s method relative to the resummation is quite evident. The eikonal phase is

given a simple physical interpretation — it is related to the time delay experienced by

geodesics upon crossing the shock wave. The exponential factor eiχ emerges as a whole

rather than by summing infinitely many individually large terms.

3 T-scattering with hadrons: intuition and questions

If TeV-scale gravity is the way of Nature, then transplanckian collisions may be within the

energy reach of the LHC. Moreover, transplanckian collisions may be constantly happening

in the atmosphere, between the atmospheric nucleons and high-energy cosmic rays (
√
s ∼

106 GeV for Ecr ∼ 1011 GeV of the order of the GZK cutoff). In case of cosmic ray neutrinos

this signal could actually be observable.

Since protons are not elementary particles, the theory of small angle T-scattering from

section 2 should be applied instead to 2→ 2 collisions between the partonic constituents.

Notice that since we are dealing with CM energies well over a TeV, the typical momentum

transfers will be hard compared to the QCD scale, even though the scattering angle has to

be small for the eikonal approximation to be valid. Thus the collision resolves the internal

structure of the proton(s), and the partonic picture is applicable [17].

Viewed another way, when two protons collide, there is a phase factor ∼ Φ(x− y) for

each pair of partons moving in the opposite directions, see figure 2. This factor tends to

zero rapidly at transverse separations |x−y| ≫ bc, where bc ∼ (100 GeV)−1 for T-scattering

at the LHC energies. Since partons are distributed in the disk of radius (GeV)−1 ≫ bc, it

is unlikely that more than one pair will undergo a hard collision.

We would like to briefly mention which observables one usually computes in phe-

nomenological studies. In νp collisions one is mostly interested in the total interaction

cross section as a function of the energy transfer to the proton [17, 22, 25]. We will discuss

a similar observable in section 5 below. On the other hand, in the pp collisions at the LHC

one studies two jet final states of high invariant mass, produced at a small angle to the

beam [15],[26], see figure 1. These jets originate from all possible parton pairs (qq, qg, gg)

with the same partonic cross section, the eikonal amplitude being independent of the par-

ticle spin. For MD not much above a TeV, the dijet T-scattering signal turns out to be

visible over the QCD background.

So far it may look that from the point of view of QCD, the T-scattering is just like any

other hard process. Let us however discuss which parton distribution factorization scale µF

one should use when evaluating the T-scattering cross sections — a necessary prerequisite

for any practical computation.
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For the usual hard processes, we are accustomed to the choice µF ∼ |q|, but for

the T-scattering this turns out to be more subtle. As we discussed in section 2.1, T-

scattering becomes semiclassical in the region of large momentum transfers |q| ≫ b−1
c .

In this regime, the transverse distance characterizing the process is the typical impact

parameter b∗ ∼ bc/(bc|q|)
1

n+1 which is parametrically larger than |q|−1. It is for this reason

that ref. [17] advocated a hybrid prescription: one should use µF ∼ |q| for |q| . b−1
c and

switch to µF ∼ b−1
∗ for |q| ≫ b−1

c , see eq. (1.1).4

For T-scattering at the LHC energies, the factorization scale µF (q) will be hard with

respect to the QCD scale as long as the momentum transfer q is hard. This gives a self-

consistency check on the proposed picture.5

The above is a summary of the current understanding of QCD effects in T-scattering.

Clearly, it is based mostly on intuition. We would like to develop a systematic theory of

these phenomena. In particular, such a theory should allow to check the factorization scale

proposal by a concrete computation. We have to evaluate the leading log corrections to

the T-scattering cross section due to the initial state radiation emission, and to show that

they can be absorbed into a shift of the PDF factorization scale. Since µF is conjectured

to have a nontrivial dependence on q, some nontrivial physics is likely to come out.

Two equivalent methods were given in section 2 to describe T-scattering without ra-

diation. Which one shall we try to generalize to the case when radiation is present?

For the resummation method, generalization does not seem to be easy, not even for the

one-gluon emission. Think about infinitely many crossed-ladder diagrams, infinitely many

places to attach the gluon line, and the necessity to take into account the gravitational

exchanges of the emitted gluon!

For ’t Hooft’s method, on the other hand, the situation looks hopeful: if only particle

B radiates, it is quite clear how to include its radiation. Namely, we should keep working

in the classical gravitational background created by particle A, but switch from relativistic

quantum mechanics (wavefunctions, the Klein-Gordon equation) to quantum field theory

(Green’s functions and interaction vertices). We will follow this path and will see that it

allows relatively straightforward computations of the gluon emission amplitudes.

Physically, the assumption that particle A does not QCD-radiate is realized if A is a

lepton. If both A and B are strongly interacting, one could first compute the radiation off B

(taking A classical), then off A (taking B classical). Such an approximation of independent

emission is valid for the dominant, collinear, radiation in the usual perturbative processes.

For the T-scattering, we will be able to partially justify it below. But first we have to

understand well the case of non-radiating A.

4A limiting case of this prescription in the context of black hole production was advocated earlier in the

first ref. [14].
5Notice however that µF (q) is a decreasing function of the CM energy, since the typical impact parameter

grows with
√

s. Even for hard momentum transfers, for sufficiently high
√

s the factorization scale will come

down to a GeV, signalling a breakdown of the partonic picture. At even higher CM energies (which are

well beyond the range of LHC or even cosmic ray collisions), the proton should interact gravitationally as

a point particle.

– 11 –



J
H
E
P
1
2
(
2
0
0
9
)
0
3
6

4 Quantum field theory in the shock wave background

4.1 Scalar field

To compute the QCD radiation accompanying a transplanckian collision, we will replace

particle A with the classical background it generates, but will keep particleB and the gluons

as quantum fields. Thus we will be doing perturbative QFT computations in the shock

wave background. We start with the simplest interacting QFT, the massless φ3 theory:

L =
√
g

(
1

2
gµν∂µφ∂νφ−

λ

3!
φ3

)
. (4.1)

We will describe how to compute transition amplitudes in this theory, and how these are

related to the amplitudes in the full theory (i.e. before particle A was replaced by a classical

gravitational field).

The gµν in (4.1) is the 4-dimensional metric obtained by restricting the D-dimensional

AS shock wave (2.6) to the SM brane on which both particles and the radiation propagate.

We will continue using the coordinates as in (2.6), only restricting the number of x⊥
components from D − 2 to 2. Two features make this theory much simpler than it would

be for generic curved backgrounds treated in [29]:

1. the metric is invariant under x+ shifts. The conjugate momentum p− is conserved.

This leads in particular to the absence of spontaneous particle creation.

2. the spacetime is flat except on the x− = 0 plane. The Feynman rules are simplified

by using the flat-space coordinates.

We start by canonically quantizing the quadratic part of the lagrangian. The scalar

field modes are found by solving the equations of motion (EOM) in the shock wave back-

ground with the plane wave conditions in the asymptotic past x− < 0:6

φin
p−,p(x) = θ(−x−)ei[p].x + θ(x−)

∫
d2q

(2π)2
I
(
p−,q

)
ei[p+q].x , (4.2)

I(p−,q) ≡
∫
d2x e−iq.xei

1

2
p−Φ(x) .

The compact “vector in square brackets” notation denotes an on-shell 4-vector whose

+ component is computed in terms of the known − and ⊥, i.e. [p + q] ≡
((p + q)2/p−, p−,p + q), etc.

The function I(p−,q) is identical to the eikonal amplitude (2.4), up to the normaliza-

tion and the absence of −1 under the integral sign (which means that it contains an extra

δ-function piece).

The modes (4.2) solve the Klein-Gordon equation both for x− < 0 and for x− > 0.

Across the shock wave, they satisfy the matching condition of section 2.2:

φ
(
x− = +ε, x+,x

)
= φ

(
x− = −ε, x+ − Φ(x),x

)
.

6By boldface letters p,x we denote the 2-dimensional, transverse to the beam, part of 4-dimensional

Lorentz vectors. The Minkowski space signature is − + + +.
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We proceed to quantize the field by expanding in oscillators:

φ(x) =

∫

p−>0

dp−d2p√
2p−(2π)3

{
ap−pφ

in
p−p(x) + a†

p−p

[
φin

p−p(x)
]∗}

, (4.3)

[
ap−

1
p1
, a†

p−
2
p2

]
= (2π)3δ

(
p−1 − p−2

)
δ(2) (p1 − p2) . (4.4)

Such normalization of the creation/annihilation operators is standard for quantizing on the

light cone; it differs from the usual one by a simple rescaling.

Equivalently, we can quantize using the outgoing modes, which reduce to plane waves

for x− > 0:

φout
p−,p(x) = θ(x−)ei[p].x + θ(−x−)

∫
d2q

(2π)2
I(p−,q) ei[p−q].x . (4.5)

The in and out modes are related by a unitary Bogoliubov transformation, which acts

only on the transverse momentum p but not on p−. Thus there is no spontaneous particle

creation in this background; the vacuum is unambiguously defined.

Let us now build a perturbation theory for transition amplitudes. The logic is simplest

in the position space. Even though the metric is singular at x− = 0, it is easy to see

that
√
g ≡ 1: the metric determinant drops out of the interaction lagrangian. Thus the

Feynman diagrams will be given by flat space integrals, with no singular contribution from

the shock wave. For instance, the t-channel diagram contributing to the p1, p2 → p3, p4

transition amplitude will be given by:

x−

x y = (−iλ)2
∫
d4x d4y

[
φout

3 (x)
]∗

[φout
4 (y)]∗G(x, y)φin

1 (x)φin
2 (y) .

(4.6)

The φout and φin enter as the in and out state wavefunctions. The propagator G(x, y)

must be x−-ordered:

G(x, y) = θ(x− − y−) 〈0|φ(x)φ(y)|0〉+ (x↔ y) .

In (4.6) we have to integrate in all possible x− orderings of x and y with respect to each

other and to the shock wave sitting at x− = 0. The propagator will take different forms

depending on the ordering. For x− and y− on the same side of the shock, we get the flat

space result:

Gflat(x, y) = θ(x− > y− > 0)

∫

p−>0

dp−d2p

2p−(2π)3
ei[p].(x−y) + (x↔ y) .

On the other hand, across the shock wave we have

Gcross(x, y) = θ(x− > 0 > y−)

∫

p−>0

dp−d2p

2p−(2π)3

∫
d2q

(2π)2
I(p−,q) ei[p+q].x−i[p].y + (x↔ y) .
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The momentum-space Feynman rule can now be found by straightforward Fourier

transformation; they are as follows. The in and out states are specified by the p− and p

of all incoming and outgoing particles. The transition amplitude i → f in the external

gravitational field of particle A is then given by:

out 〈f |i〉in = 2(2π) δ(p−f − p−i )M(i→ f) .

TheM(i→ f) is a function of the external momenta computed as a series in λ according

to the following rules. To obtain the O(λN ) term:

• Draw the Feynman diagrams with N φ3 vertices, considering all possible x−-orderings

of these vertices with respect to each other and to the shock wave at x− = 0.

• Consider all shock wave crossings as additional vertices, with entering transverse

momenta qa representing momentum exchange with the shock wave.

• Assign p−,p internal lines momenta by using their conservation in all vertices (φ3

and shock wave crossings). Momentum flow is in the direction of increasing x−.

The internal p+ momenta are not conserved but are assigned by using the on-shell

condition p+ = p2/p−.

• For each φ3 vertex multiply by −iλ.

• For each shock wave crossing vertex multiply by p−I(p−,qa), where p− is conserved

in the crossing.

• For each internal line (i.e. a line connecting two vertices, φ3 or shock wave crossing)

carrying momentum p−, multiply by θ(p−)/p−.

• The φ3 vertices and the shock wave at x− = 0 divide the x− axis into two unbounded

and N bounded intervals. For each bounded interval, we define an intermediate

state, consisting of all the particles whose internal lines traverse this interval. For

each intermediate state at negative x−, the amplitude is multiplied by

i∑
i p

+ −
∑

interm p
+ + iε

.

For each intermediate state at positive x−, it is multiplied by

i∑
f p

+ −
∑

interm p
+ + iε

.

The sums are over all particles in the initial (x− = −∞), intermediate, and final

(x− = +∞) state.

• Integrate over the momenta qa exchanged with the shock wave:

∫
(2π)2δ(2)

(∑
qa + pi − pf

)∏ d2qa

(2π)2
.
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• For loop diagrams, integrate over all undetermined momenta (k−,k):
∫
dk−d2k

2(2π)3
.

The reader will notice a striking similarity to the usual light-cone perturbation theory

(PT) rules [30]. Notice in particular the light-cone energy denominators, and the θ(p−)

factors, which eliminate some of the diagrams present in the time-ordered ‘old’ perturbation

theory. New features in our case are the shock wave crossing vertices, and that there are two

types of energy denominators, depending on the ordering with respect to the shock wave.

We thus have ‘light-cone PT in presence of an instantaneous interaction’. Many years ago,

Bjorken, Kogut and Soper [31] have developed light-cone PT in external electromagnetic

field, and argued that at sufficiently high energies interaction with the external field can

be represented as an instantaneous eikonal scattering.7 In our case, the eikonal factor

has gravitational origin, but the formalism is the same. The formalism of [31] has found

application in the dipole scattering approach to the DIS at small x: an almost-real photon

splits into two quarks which then undergo eikonal scattering in the gluon field of the

proton [32]. The difference is that the gluon field of the proton is not really known, while

in our case the eikonal phase can be computed exactly.

We will now demonstrate the rules by computing a couple of amplitudes. The elastic

one-particle amplitudeM(p→ p′) is given by just one diagram with a shock wave crossing

vertex (denoted by a cross):

p′

p

q

x−

M(p→ p′) = p−I(p−,p− p′)
(
p2 = p′2 = 0, p− = p′−

)
. (4.7)

As a more complicated example, let us compute one of the diagrams appearing in the

computation of the amplitude p1, p2 → p3, p4:
8

p3

k1

p1

k2

k3

p4

p2

k4

q2
q1 q3

x−

7We thank Zoltan Kunszt for bringing this work to our attention.
8In physical applications below we will be computing amplitudes with one incoming and several outgoing

particles. This amplitude containing two incoming particles is considered for illustrative purposes only.
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We have two φ3 vertices and three shock wave crossings. The dotted lines stress the x−

ordering of the vertices. The ki are the internal line momenta, whose − and ⊥ components

are fixed via momentum conservation, while the + components are determined by being

on shell. There are two intermediate states: one before the shock wave (k1, k2, p2), and one

after (p3, k3, k4). The value of this diagram is thus:

∫
(2π)2δ(2)

(∑
qa + p1 + p2 − p3 − p4

) 3∏

a=1

d2qa

(2π)2

× (−iλ)2 k−1 I(k
−
1 ,q1) k

−
2 I(k

−
2 ,q2) p

−
2 I(p

−
2 ,q1)

× i

(p+
1 + p+

2 )− (k+
1 + k+

2 + p+
2 ) + iε

i

(p+
3 + p+

4 )− (p+
3 + k+

3 + k+
4 ) + iε

4∏

i=1

θ(k−i )

k−i
.

Finally, we have to discuss the relation between the transition amplitude M(i → f)

and the full relativistic scattering amplitudeMrel, i.e. the one obtained when we reinstate

particle A as a quantum particle as opposed to replacing it with its classical field. We have:

Mrel

(
A+ i→ A′ + f

)
= −i 2p+

AM(i→ f) . (4.8)

The incoming (outgoing) momenta of particle A are assigned as follows:

pA = (p+
A, 0, 0), p′A =

(
p+

A, 0,pi − pf

)
.

In other words, particle A absorbs the total transverse momentum exchanged with the

shock wave. As long as the momentum transfer is small compared to p+
A, A′ is almost on

shell and the approximation is justified.

The relative factor −i 2p+
A in (4.8) is related to the normalization of the particle A

state, which is lost when we replace it with a classical field. This factor is thus process-

independent. For instance one can extract it from the external field approximation in

QED [24]. The extra i can be traced back to the external field creation vertex, which

carries a factor of i.

This settles the question of relativistic normalization of the amplitudes computed via

’t Hooft’s method. We can now complete the comparison with the resummation method.

Using eqs. (4.7), (4.8) we have

Mrel(A+B → A′ +B′) = −2ip+
Ap

−
B I(p

−
B,q) , (4.9)

which agrees with the eikonal amplitude from eq. (2.2) including the normalization, modulo

the difference between the S- and T-matrices already discussed in section 2.2.

4.2 Gauge field

In order to keep technical details to a minimum, we will not consider fermionic fields in

the shock wave background. Instead, we will stick to a toy model in which charged matter

(partonic constituents of the colliding hadrons) consists of massless scalars. This will be

sufficient given our general goals. On the other hand, since the coupling constant of the
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φ3 lagrangian has dimension of mass, the cubic self-interaction is not a good model for the

QCD radiation. We do have to introduce gauge fields. Thus we switch from (4.1) to a differ-

ent microscopic lagrangian, describing the SU(3) Yang-Mills theory and a massless complex

scalar in the fundamental representation, propagating in the shock wave background:

L =
√
g

(
1

2
gµν (Dµφ)∗Dνφ−

1

2
Tr[FµνFλσ]

)
. (4.10)

Most of the φ3 formalism is carried over with trivial changes. Instead of repeating the

whole discussion, we will introduce the necessary modifications on a concrete example.

Namely, let us consider the one-gluon emission: particle B, while scattering in the

gravitational field of particle A, emits a gluon. The amplitude is given by the sum of the

following two diagrams:

(I)

p′

p

l, ε

q

(II)

p′

p

l, ε

kq− k

(4.11)

The new objects are the gluon emission and the gluon shock wave crossing vertices.

To simplify the computations, we will impose the Lorenz and light-cone gauge condi-

tions:

DµAµ = 0, A+ = 0 .

The treatment in a general gauge and demonstration of gauge invariance is given in ap-

pendix A.

Gluon emission in curved space is described by the cubic term in the lagrangian:

igs

∫
d4x
√
ggµνφ∗i

←→
∂ µφj(T

a)ij A
a
ν . (4.12)

Here gs is the strong coupling constant, and the SU(3) generators are normalized by

Tr(T aT b) = 1/2. In the light-cone gauge the singular component g++ ∝ δ(x−) drops

out (see appendix A for a more detailed discussion). The gluon emission vertex is thus the

same as in flat space:

p2, j

p1, i

ε, a

gsT
a
ij (p1 + p2) .ε −→ gsT

a
ij

(
p1 + p2 −

p−1 + p−2
l−

l

)
.ε (ε+ = 0, l.ε = 0) , (4.13)

– 17 –



J
H
E
P
1
2
(
2
0
0
9
)
0
3
6

where we used the Lorenz gauge to eliminate the ε− component.

The gluon shock wave crossing vertex contains the same factor p−I(p−,q) as in the

scalar case. A new feature is that the ε− polarization component changes in the crossing

according to:

p2, ε2

p1, ε1

q

x−

ε2− = ε1− −
ε1.q

p−1
, ε2 = ε1 (ε+ ≡ 0) , (4.14)

This rule is easy to guess from consistency with the imposed gauge; see appendix A for an

explicit derivation. Notice however that we don’t have to keep track of this change in ε−
if we use the simplified gluon emission vertex in (4.13).

We are now ready to evaluate the above two diagrams. Working for simplicity in the

frame where p = 0, we get:

M(I) = igsT
a
ij I
(
p−,q

)
(
2p′ + l− 2p′−+l−

l−
l
)
.ε

p′+ + l+ − [p′ + l]+
,

M(II) = igsT
a
ij

∫
d2k

(2π)2
I
(
l−,k

)
I(p′−,q− k)

(
k− l− 2p−−l−

l−
(l− k)

)
.ε

−[p− l + k]+ − [l − k]+ + iε
. (4.15)

Physical consequences of the derived expressions will be discussed below.

As a final comment, we note that lagrangian (4.10) contains also a cubic gluon self-

interaction vertex, which could be discussed analogously to (4.13), as well as two quartic

vertices (φφAA and AAAA). The quartic vertices do not contribute to the amplitudes in

the collinearly enhanced region, and we will not need their precise expressions.

5 Initial state radiation in T-scattering

The dominant QCD radiation effects in the usual perturbative hard scattering processes

are the collinear initial and final state radiation. We now proceed to see how these effects

manifest themselves in the T-scattering. We will focus on the initial state radiation and

its effect on the parton distribution scale. Final state radiation, which happens after the

partons cross the shock wave, is expected to be as usual.

5.1 Observable

To discuss radiative corrections to the PDFs, we need to choose a process and an observable

which can be defined and computed beyond LO. The simplest such process is the T-

scattering analogue of the DIS. In other words, we will consider an electron-proton T-

scattering ep→ e+anything at a fixed momentum transfer. This is like in figure 1 with an

electron instead of a neutrino.

The scattering is characterized by t = −q2 and q+, the energy transfer to the pro-

ton. These can be measured by observing the electron. As usual, we assume small angle

scattering: |t| ≪ s. We will also assume that the relative electron energy loss is small,
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q+ ≪ p+
A. Under these conditions, and also since the electron does not QCD-radiates, we

can represent it by a classical relativistic point particle of fixed energy. This is our ‘particle

A’. Using the A′ on shell condition (pA − q)2 = 0, it is easy to show that the momentum

transfer is mostly in the transverse plane, as expressed by the relation:

q2 = q2
(
1 + 2q+/p+

A

)
≃ q2 .

Like in the DIS, we are interested in the differential cross section with respect to q

and the Bjorken x:

dσ

d2q dx
, x =

q2

p−Bq
+
, 0 < x < 1 .

As is customary, we will first analyze the partonic cross section σ̂ between the electron

and a quark (particle B). We will work in a toy model of scalar quarks. At LO (no gluon

emission), the amplitude is (4.9) and the partonic cross section is given by

dσ̂LO

d2q dx
= δ(x− 1)

1

4π2
|I(p−B,q)|2 .

5.2 One gluon emission in momentum space

Armed with the formalism from section 4, we can easily write down the gluon emission

amplitudes. At the NLO we have diagrams with real gluon emission, as in eq. (4.11), as

well as virtual corrections to the external legs and the vertices in the elastic amplitude. As

usual, the latter diagrams do not have to be computed explicitly, since they only correct

the coefficient of δ(x− 1).9 We thus focus on the real emission.

The partonic cross section with one gluon emitted is given by a phase space integral

(see appendix B)

dσ̂NLO

d2q dx
=

1

16π2ŝ

∫
d2l

2(2π)3

∫ 1

0

dz

z(1− z) δ
(
x− q2/

(
p−Bq

+
))
|Mrel|2, (5.1)

q+ = l2/l− + (q− l)2/p−B′ .

Here Mrel is the relativistic scattering amplitude A + B → A′ + B′ + g, related to the

transition amplitude in the external fieldM(B → B′ + g) via eq. (4.8). The amplitudeM
is in turn the sum of the two diagrams (4.11), evaluated in eq. (4.15).

We are using notation from (4.11) with p ≡ pB, p′ ≡ pB′ . The q+ is the total +

momentum of the quark-gluon system after the collision. The z is the p− momentum

fraction carried off by quark B′:

p′− = zp−, l− = (1− z)p− .
9Vertex corrections play a role in cancelling the IR divergence in the cross section corresponding to the

emissions of soft gluons at large angles. This cancellation holds for any hard process. Specifically, it will

also happen for the T-scattering because soft gluons do not feel the shock wave of particle A. Thus we do

not discuss soft gluons in what follows, concentrating on the collinear divergence.
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Figure 7. The function X(z) for a generic l% (solid line) and for |l| ≪ |q| (dashed line).

Let us first analyze which region of the l plane contributes to the integral (5.1). For

which l is there a z saturating the δ-function? The relevant function (see figure 7)

X(z) ≡ q2/(p−Bq
+) ≡ q2

(q− l)2/z + l2/(1− z) ,

has a maximum value

max
0<z<1

X(z) = X(z∗) =
q2

(|q− l|+ |l|)2 (z∗ =
|q− l|

|q− l|+ |l|) .

Thus, the integrand of (5.1) is nonzero for l belonging to the ellipse:

|q− l|+ |l| < |q|/
√
x .

In other words, phase space limits the transverse momentum of the emitted gluon to be at

most O(q).

Let us now examine the amplitude, whose two parts are given in eq. (4.15). By analogy

with the usual DIS, we expect that part (I), corresponding to the gluon emission after the

hard scattering, gives only a finite correction to the cross section, while part (II) contains

a logarithmic IR divergence which has to be absorbed by redefining the PDFs. Let us see

formally how this happens.

Notice that part (I) of the amplitude is non-singular in the l plane. In particular, the

intermediate state denominator is completely fixed at q2( 1
x − 1)/p− > 0. Omitting the

x dependent factors, the amplitude is thus O(gs I q.ε/q2), and its square is O(g2
s |I|2/q2).

After integrating over the ellipse in the l plane (area ∼ πq2), we get a finite contribution

to the differential cross section of the relative order O(αs/π). This is as expected.
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Interesting physics is associated with part (II), whose expression can be simplified as

follows:

M(II) = −igsT
a
ij 2p−z ε.M ,

Mi =

∫
d2k

(2π)2
(k− l)i

(k− l)2
I(zp−,q− k) I((1− z)p−,k) (5.2)

≡ −li
l2

Ĩ(zp−,q) +
(q− l)i

(q− l)2
Ĩ((1− z)p−,q)

+

∫
d2k

(2π)2
(k− l)i

(k− l)2
Ĩ(zp−,q− k) Ĩ((1− z)p−,k) . (5.3)

Here we separated the regular part Ĩ of the I(p−,q) from the δ-function piece describing

the propagation without scattering:

I(p−,q) = (2π)2δ(2)(q) + Ĩ(p−,q) ,

Ĩ(p−,q) = 2πb2cFn(bc|q|) ,

where Fn(y) are the same functions as in eq. (2.5). We omitted a total δ(2)(q) piece

from (5.3).

The physical meaning of the decomposition (5.3) is as follows. In the first two terms,

only one of the two splitting products of quark B participates in the gravitational inter-

action, the other one passing the shock wave without scattering. The last term instead

describes their coherent gravitational scattering, as in figure 3. We call it the rescattering

term, since it corresponds to the situation when the emitted QCD radiation changes its

direction in the field of the shock wave.

We now proceed to studying corrections to the cross section. Consider first the case

|q| . b−1
c . In this case all the entering Ĩ functions are O(2πb2c). The rescattering term can

be estimated by integrating up to |k| ∼ b−1
c beyond which point the Ĩ decrease faster than

|k|−1, and the integral converges. We get

|Mresc| ∼
πb−2

c

(2π)2
bc
(
2πb2c

)2 ∼ bc
(
2πb2c

)
<

1

|q|(2πb
2
c) (|q| . b−1

c ) . (5.4)

We see that rescattering is subleading to the first two terms in (5.3).

Concentrating on the first two terms, the dominant contribution to the cross section

comes from the singularities at l→ 0 and l→ q. Squaring the amplitude and integrating

we get:

dσ̂NLO

d2q dx
≃ 1

4π2

{∣∣Ĩ(xp−,q)
∣∣2PQ→Q(x) +

∣∣Ĩ(xp−,q)
∣∣2PQ→g(x)

} αs

2π
log

q2

µ2
IR

(|q| . b−1
c ),

PQ→Q(x) = CF
2x

1− x, PQ→g(x) = PQ→Q(1− x) , CF = 4/3. (5.5)

Here we used that in the relevant regions of integration (see figure 7)

x = X(z) ≃ z (|l| ≪ |q|) , x = X(z) ≃ 1− z (|q− l| ≪ |q|) .
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Eq. (5.5) has the standard factorized form expected from an NLO QCD correction to a

hard scattering [27]. The IR divergent logarithm multiplies the quark-electron and gluon-

electron LO cross sections, with the scalar quark DGLAP splitting functions PQ→Q and

PQ→g as coefficients.10 As usual, we can absorb the IR divergence into the quark (first

term) and gluon (second term) PDFs. If we fix the parton distribution scale at the upper

cutoff, µ2
F = q2, then the whole logarithmic correction is absorbed.

It is of course not surprising that we managed to recover the standard factorization

for |q| . b−1
c : rescattering was not important in this case, and without rescattering there

is no difference between transplanckian and any other hard scattering.

Let us proceed to the case |q| ≫ b−1
c . The situation here is more complicated since the

rescattering is no longer subleading. Consider for example the region |q| ≫ |l| ≫ b−1
c . The

rescattering integral is dominated by |k| . b−1
c , where Ĩ((1− z)p−,k) is maximal, and not,

say, by the region of |k| ∼ |l|, where (k−l)i

(k−l)2
is maximal. The reason is that Ĩ((1− z)p−,k)

decreases faster than |k|−1 for |k| ≫ b−1
c . We get an estimate:

|Mresc| ∼
πb−2

c

(2π)2
1

|l|
(
2πb2c

)
|Ĩ(zp−,q)| ∼ 1

|l| |Ĩ(zp
−,q)| (|q| ≫ |l| ≫ b−1

c ) , (5.6)

which is comparable to the first term without rescattering in (5.3).

5.3 Impact parameter picture

In a situation when rescattering cannot be neglected, the separation into three terms in

eq. (5.3) becomes artificial, and we should treat the whole amplitude as given in (5.2).

Substituting the definitions of I, we can transform this expression into a transverse

plane integral:

Mi =
i

2π

∫
d2y′ d2y

(y′ − y)i

|y′ − y|2 e
−i(q−l).y′+iz p−

2
Φ(y′)e−il.y+i(1−z) p−

2
Φ(y) . (5.7)

This simple equation provides a key insight into the physics of the process. Namely, we

can view the factor Ψ(y′,y) = (y′−y)i

|y′−y|2
as the coordinate-space wavefunction of the gluon-

quark state into which quark B splits. Upon crossing the shock wave, this two-particle

wavefunction is multiplied by the eikonal factors eiz
p−

2
Φ(y′) and ei(1−z) p−

2
Φ(y), depending

on the transverse plane position of each particle. Finally, to compute the S-matrix element,

one takes the overlap with the outgoing state wavefunction e−i(q−l).y′
e−il.y.11

The completely general expression (5.7) can be further simplified if |l| ≪ |q|. In

this case, the typical y contributing to the integral are much larger than the typical y′.

Approximating y′ − y ≃ −y, the amplitude takes a factorized form:

Mi ≃ I(zp−, q) fi (|l| ≪ |q|) , (5.8)

10See [33] for the splitting functions of a colored scalar.
11See [34] where similar considerations are made for a gluon splitting into a qq̄ pair in the field of an

incoming nucleus.
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where the gluon emission factor fi is given by

fi = − i

2π

∫
d2y

yi

|y|2 e
−il.y+i(1−z)

“

bc
|y|

”n

= − li
l2
× Cn

[
(1− z)1/nbc|l|

]
, (5.9)

Cn(u) ≡
∫ ∞

0
dy J1(y) e

i(u
y
)n

.

This factor has a nontrivial dependence on l. For |l| ≪ b−1
c the integral is dominated by

large |y| ≫ b−1
c , so that the second term in the exponent can be dropped, giving

fi ≃ −li/l
2

(
|l| ≪ b−1

c

)
.

Thus we recover the first term in eq. (5.3), which in this limit dominates the amplitude.

On the other hand, in the opposite limit the integral can be evaluated by stationary

phase, with the result:

fi ≃
ei×phase

√
n+ 1

li/l
2

(
|l| ≫ b−1

c

)
. (5.10)

Remember that precisely in this case we expected a non-negligible contribution from rescat-

tering, see eq. (5.6). We now see that its effect is indeed important: rescattering leads to

an O(1) reduction of the gluon emission amplitude! Physically, this can be explained as

follows. To scatter with large l, the emitted gluon must cross the shock wave in the region

of small impact parameters. In this region, the eikonal factor in (5.9) distorts the gluon

wavefunction, which leads to suppression of the amplitude via destructive interference. It

is however remarkable that, up to an l-dependent phase, the suppressed amplitude still

goes as li/l
2.

In terms of the function Cn, the above asymptotics can be stated as follows:

Cn(u)→ 1 (u→ 0) , |Cn(u)| ≃ 1/
√
n+ 1 (u≫ 1) .

As can be seen from figure 8, the large u behavior sets in already for u & 2.

We are now ready to derive the logarithmic correction to the cross section for |q| ≫ b−1
c .

We square eq. (5.8) and integrate in |l| ≪ |q|, taking into account the suppression for

|l| ≫ b−1
c . Schematically, we get:

∫

|l|.|q|
d2l |f |2 −→

∫ b−1
c

µIR

dl

l
+

1

n+ 1

∫ |q|

b−1
c

dl

l
= log

µF (|q|)
µIR

. (5.11)

In other words, due to the 1/(n+ 1) suppression of the second term, the arguments of the

two logs combine into a geometric mean which coincides exactly with eq. (1.1)!

The final result is as follows: for |q| ≫ b−1
c , the NLO correction to the cross section is

given by the same eq. (5.5) as for |q| . b−1
c with the following simple replacement:

log
q2

µ2
IR

(|q| . b−1
c ) −→ log

µ2
F (|q|)
µ2

IR

(|q| ≫ b−1
c ) .
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Figure 8. Numerical plots of Cn(u) for n = 2, 3, 4, 5: the absolute value (solid blue curve), the

real and imaginary parts (dashed and dot-dashed curves), the u = ∞ asymptotic value 1/
√
n+ 1

(dotted line).

5.4 Discussion

Let us discuss what we have achieved. First, we have shown that the emission amplitude

of near-collinear gluons has a factorized form, eq. (5.8). Physically, it means that we can

first consider the hard scattering process, and worry about adding additional gluons later.

If a parton splits in two before crossing the shock wave, one and only one of the splitting

products absorbs most of the momentum transfer in a typical event. This is actually an

important check of validity of the partonic picture.

Second, we found explicitly the gluon emission factor fi. The probability distribution

of emitted gluons is given by |fi|2. We found that for large relative transverse momenta

|l| ≫ b−1
c (but still |l| ≪ |q|) this distribution is suppressed by a factor 1/(n+1) relative to

the standard QCD distribution 1/l2. This is a new effect, which could be used to measure

the number of extra dimensions.

Finally, as a consequence of this suppression, the logarithmic NLO correction to the

partonic cross section involves, for |q| ≫ b−1
c , a scale which interpolates between the usual

|q| and b−1
c in agreement with eq. (1.1). In fact, as we show in appendix C, such logarithms

occur in every order of perturbation theory. Thus, as usual, they can be exponentiated

and removed by shifting the parton distribution scale to µF (|q|). This, then, provides a

formal justification for the proposal of Emparan, Masip, and Rattazzi [17], that this scale

is the one minimizing higher-order corrections.
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Our derivation of the scale (1.1) has an added advantage that we now know the gluon

distribution. This distribution could not be easily guessed: for example the standard 1/q2

with a sharp b−1
∗ cutoff would give rise to the same log. At the same time, the very fact that

we found agreement with ref. [17] may seem like a mistery. Remember that they fixed this

scale to be equal to b−1
∗ (see section 3). Where, then, does the typical impact parameter

b∗ hide in our computation?

In fact, if we are not interested in the gluon distribution, we can reformulate our

derivation so that it will conform with the original intuition of [17]. The idea is to compute

the l.h.s. of eq. (5.11) not from the asymptotics of Cn but directly from the definition of

fi in the impact parameter representation. Since the L2 norm of the gluon wavefunction is

the same in the momentum and in the position space, we have

∫ |q|

µIR

d2l

(2π)2
|f |2 ∼

∫
d2y

∣∣∣∣
yi

|y|2 e
i(1−z)

“

bc
|y|

”n
∣∣∣∣
2

=

∫
d2y

y2
∝ log

ymax

ymin
.

The only subtlety is that in the l.h.s. we are not integrating over the whole l plane, and

thus the limits of the y intergration have to be adjusted accordingly. A moment’s thought

shows that the correct limits should be put at the typical y values contributing to fi at

|l| ∼ µIR and |l| ∼ |q|:
ymax ∼ µ−1

IR , ymax ∼ b∗ .

So, we recover the same logarithm as above, and this time b∗ enters explicitly.

We have worked throughout in the toy model of scalar quarks. However, it should

be easy to adapt our considerations to the realistic case of fermionic matter. One would

have to compute the shock wave crossing vertex for the fermion field. This will require

solving the Dirac equation in the shock wave background. We expect that our results about

factorization and suppression of radiation at large angles will remain true in the fermionic

case as well.

6 Simultaneous radiation

So far we were making the technical simplifying assumption that particle A does not QCD-

radiate. This is of course not true in pp collisions at the LHC, when both colliding partons

are colored. We will now discuss how one could relax or remove this restriction.

Consider the following two key properties of QCD radiation:

1. Near-collinear emission dominates.

2. Its amplitude takes a factorized form.

These properties are true for the standard hard perturbative processes. For the T-

scattering with non-radiating A, we have also shown them to be true, provided that a gluon

emission factor is adjusted accordingly. We conjecture that these properties continue to

hold when both A and B are allowed to radiate. In practice, this implies that the dominant

part of the emitted radiation can be described using the independent emission approxima-

tion: first compute the radiation off B (taking A classical), then off A (taking B classical).
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Intuitively, this can be justified as follows. The fact that the near-collinear emission

dominates is due to the ∼ 1/|l| singularity in the gluon emission factor, combined with a

phase space cutoff |l| . |q|. We have seen that shock wave crossing tends only to suppress

radiation at large angles by distorting the gluon wavefunction, and we do not expect this

tendency to reverse when A is allowed to radiate. Thus collinear radiation should dominate

also for the T-scattering. Once we know that collinear emission dominates, and thus the

emitted radiation does not change the hard transverse momentum flow of the process,

it seems reasonable that the amplitude should factorize into the product of the 2 → 2

scattering with the hardest momentum exchange times the gluon emission factors.12

The independent emission approximation is probably adequate for most practical pur-

poses. Nevertheless, to try to go beyond it is an interesting theoretical challenge. We will

now describe pictorially a generalization of our formalism which, we believe, can describe

simultaneous emissions from A and B without any extra approximation (except, of course,

large CM energy and small scattering angle).

The starting point is the emission amplitude in the impact parameter representa-

tion (5.7) (see appendix C for its generalizations to two and more gluons). The physical

meaning of this equation in terms of the two-particle wavefunction and individual eikonal

factors was explained above. Suppose now that both particles split. The amplitude can be

constructed according to the following three steps (see figure 9).

1. We evolve the partons from infinity to the transverse plane x− = x+ = 0 where the

collision is assumed to happen. We introduce many-particle wavefunctions for the

splitting products of both A and B. The total wavefunction in the transverse collision

plane is the product of the two:

Ψtot = ΨA({xa})ΨB({yb}) .

Here xa (yb) are the transverse coordinates of left- and right-movers. The ΨA,B can

be computed via the flat-space light cone perturbation theory. For the one-gluon

emission they are the same as in (5.7).

2. When the splitting products cross the transverse collision plane, the wavefunction

Ψtot is multiplied with eikonal factors, one for each pair of opposite-movers. It is not

difficult to guess that these factors are equal to

exp izazbχ(xa − yb) ,

where χ is the 2→ 2 eikonal phase from (2.4), and za = p+
a /p

+
A, zb = p−b /p

−
B are the

longitudinal momentum fractions carried by partons a and b.

12We are ignoring here soft gluons which may be exchanged between particles A and B. In case of standard

hard QCD processes involving two initial hadrons, like in Drell-Yan, where proofs of factorization to all

orders in perturbation theory exist [35], it is known that such soft gluon exchanges cancel in the total

cross section. We expect this cancellation to carry over to our case, because soft gluons do not feel the

gravitational field of the energetic particles (the eikonal factor being proportional to the gluon energy).
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y2

x2
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B

Figure 9. This diagram represents one of the terms in the amplitude A+B → A′ + g+B′ + g, in

which both the right-moving A and left-moving B split before colliding.

3. Finally, to find S-matrix elements, we compute the overlap with the outgoing state

wavefunctions. These are simple plane waves if the partons do not undergo any

splittings after the shock wave crossings. If such splittings are present, like in part

(I) of (4.11), these are more complicated functions of external momenta. However,

since at this stage left- and right-movers no longer interact, the flat-space light cone

perturbation theory can be used to find them.

We think that this generalized formalism, apart from providing an attractive mental

picture, could find interesting future applications, especially in the problem of gravitational

radiation emission.

7 Conclusions

The main point of this paper is that including radiation in small-angle transplanckian scat-

tering is, after all, a tractable problem. The gravitational interaction producing eikonal

phase factors happens instantaneously, while the processes of particle splitting are spread

in time. Based on this observation, we developed a formalism which allows explicit com-

putations of scattering amplitudes in presence of hard, quantum, radiation. In the impact

parameter representation, the radiating particle splits into a multi-particle virtual state,

whose wavefunction, computed via light-cone perturbation theory, is then multiplied by

individual eikonal factors.

We demonstrated the usefulness of our formalism on the concrete problem of initial

state QCD radiation in transplanckian scattering. We will not repeat here the detailed

discussion of the obtained results given in the Introduction and in section 5.4. We believe

however that this example by no means exhausts the list of possible applications. We are

particularly hopeful about a possibility to shed new light on the problem of gravitational

radiation emission, which is always on our mind.
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A Gluon field in the shock wave background

Here we will discuss quantization of the free gluon field in the shock wave background, as

well as the gluon emission vertices, the gauge invariance, and the absence of gluon emission

terms localized on the shock wave.

We start from the Maxwell Lagrangian in curved spacetime, which integrating by parts

can be rewritten as

L = −1

4

√
gFµνFλσ → − 1

2

√
g
[
(DµAν) (DµAν)− (DµA

µ)2 +(4)RµνA
µAν

]
.

Notice that while the D-dimensional Ricci tensor of the AS metric is zero for x⊥ 6= 0

as a consequence of Einstein’s equation, the 4-dimensional Ricci tensor of the metric gµν

induced on the SM brane is nonzero. Namely, it has a nonzero component

(4)R−− = −1

2
δ(x−)∂2

xΦ 6= 0

(compare with (2.7) where the Laplacian is with respect to all D−2 transverse directions).

Let us fix the curved space Lorenz gauge DµA
µ = 0. In this gauge the EOM take the

form:

D2Aν −(4)R µ
ν Aµ = 0 . (A.1)

We first discuss the gluon propagator across the shock wave. To find it we need to

solve the EOM with the initial conditions Aµ = εµe
ipx for x− < 0.

Consider first the light-cone gauge case ε+ = 0. It is easy to see that the shock wave

metric has Γµ
+ν ≡ 0, which implies A+ ≡ 0. The other gauge field components are found

to satisfy the equations:

∂+∂−A + δ(x−)Φ(x)∂2
+A =

1

4
∂2
xA ,

∂+∂−A− + δ(x−)

[
Φ(x)∂2

+A− +
1

2
∂iΦ(x) ∂+Ai

]
=

1

4
∂2
xA− ,

Just as in the scalar field case, it is enough to find a matching condition, i.e. to relate

solution of these equations for x− = −ǫ and x− = +ǫ. One could use the method of

section 2.2 based on transforming to the x̃ coordinates. Here we want to demonstrate a

different, equivalent, approach. Namely, we regularize the above equations by smearing the

δ-functions. One can show that the terms put in the r.h.s. of the equations can be dropped

in this analysis, since their effect goes to zero when the regulator is removed. All the other

terms are however important.

From the first equation, we find how the transverse components varies across the shock

wave:

A = ε e−i p−

2
x++ip.x exp

(
i
p−

2

∫ x−

−ǫ
δ(x−)Φ(x)

)
. (A.2)

Subsituting this solution into the equation for A− we find:

A− =

[
ε− −

1

2
θ(x−)εi∂iΦ(x)

]
e−i p−

2
x++ip.x exp

(
i
p−

2

∫ x−

−ǫ
δ(x−)Φ(x)

)
. (A.3)
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Thus on the other side of the shock wave:

A(x− = +ǫ) = ε e−i p−

2
(x+−Φ(x))+ip.x ,

A−(x− = +ǫ) =

(
ε− −

1

2
εi∂iΦ(x)

)
e−i p−

2 (x+−Φ(x))+ip.x .

These are the desired matching conditions. Taking the Fourier transform we recover the

rule (4.14).

A general solution of the EOM (A.1) is a linear combination of the just found solution

in the gauge A+ = 0 with a pure gauge solution

Aµ = ∂µψ . (A.4)

The gauge parameter ψ is given by eq. (4.2) as a general solution to the Klein-Gordon

equation.

Let us now discuss the gluon emission term (4.12) in a general gauge. There are several

quantities in (4.12) with δ-function singularities on the shock wave. Thus one may wonder

if there is a contact emission term localized on the shock wave. In fact such a contribution

is absent, so that one can always compute the gluon emission as a sum of two separate

integrals for x− > 0 and x− < 0. To see this, one can argue as follows.

First of all, as already mentioned in section 4.2, localized terms are absent in the

light-cone gauge A+ = 0. In this gauge Aµ does not contain δ-function singularities as one

can see from the explicit solution (A.2), (A.3). The δ-function does appear in g++ and in

φ∗
←→
∂ −φ, but all contractions involving these terms necessarily contain A+ and vanish.

Second, consider the pure gauge case (A.4). In this case there are several δ-function

terms in (4.12). However, one can show that they cancel among themselves. The reason for

this cancellation is as follows. Since the integrand in (4.12) is a Lorentz invariant, we can

compute it in the x̃ coordinates (2.10). In these coordinates both φ and ψ are continuous,

and the integrand has at most θ-function singularity on the shock wave.

To demonstrate the absence of localized terms by a concrete example, let us show

that the one-gluon emission amplitude is gauge invariant. We thus have to show that the

amplitude to emit a longitudinally polarized gluon is zero, without inclusion of any extra

terms localized on the shock wave. The one-gluon emission amplitude is given by the

coordinate-space integral:

M = i

∫
d4x
√
ggµν

{[
φout

p′ (x)
]∗←→

∂ µφ
in
p (x)

}
Aout

ν (l, ε;x) .

Here Aout
ν (l, ε;x) is the outgoing gluon wavefunction. In the considered longitudinal case

εµ = lµ we have:

Aout
µ (l, ε;x) ∝ ∂µφ

out
l (x) .

The integral splits into two parts: x− > 0, x− < 0. Each of these can be integrated by

parts and, using the current conservation, reduces to a boundary term localized on the
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shock wave. These boundary terms are not quite identical:

M(x−>0) = −
∫
dx+d2x

{
ei(

1

2
p′−x+−p′.x)←→∂ +e

−i( 1

2
p−[x+−Φ(x)]−p.x)

}
ei(

1

2
l−x+−l.x) ,

M(x−<0) =

∫
dx+d2x

{
ei(

1

2
p′−[x++Φ(x)]−p′.x)←→∂ +e

−i( 1

2
p−x+−p.x)

}
ei(

1

2
l−[x++Φ(x)]−l.x) .

However, after integrating in x+ and taking into account the resulting p−-conserving δ-

function, they are seen to cancel.

B Light-cone phase space

The partonic cross section with n gluons emitted A+B → A′ +B′ + g1 + . . .+ gn is given

by the phase space integral

dσ̂ =
1

2ŝ
|M(n)

rel |2 (2π)4δ(4)(pi − pf ) dΦ(n+2) .

We assume that A and B collide head on along the z direction. We use the light-cone

phase space adapted to the direction of motion of each particle:

dΦ(n+2) =
dp+

A′d2pA′

(2π)32p+
A′

dp−B′d2pB′

(2π)32p−B′

∏ dl−i d
2li

(2π)32l−i
,

δ(4)(pi − pf ) = 2δ
(
p+

i − p+
f

)
δ
(
p−i − p−f

)
δ(2) (pi − pf ) .

The momentum conserving δ-function is saturated by integrating in dp+
A′d2pA′dp−B′ , which

gives

dσ̂ =
1

16π2ŝ2
|M(n)

rel |2
p−B
p−B′

d2pB′

∏ dl−i d
2li

(2π)32l−i
.

The differential cross section in the momentum transfer q and the Bjorken x is thus

given by:

dσ̂

d2q dx
=

1

16π2ŝ2

∫
|M(n)

rel |2
p−B
p−B′

∏ dl−i d
2li

(2π)32l−i
δ

(
x− q2

p−Bq
+

)
,

where q+ = p2
B′/p

−
B′ +

∑
l2i /l

−
i , pB′ = q−

∑
li, p

−
B′ = p−B −

∑
l−i under the integral sign.

C Multi-gluon emission

Let us look at the leading logarithmic corrections to the cross section which come from the

radiation of many gluons. We want to verify that they have the correct form in order to

be reabsorbed into the PDFs normalized at the scale µF (q).

To begin with, consider the emission of two gluons. In the LLA, we are looking for

(αs log µF

µIR
)2 corrections to the cross section. One can show that, because of the form of the

denominators in our Feynman rules, a gluon which does not cross the shock wave will not
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p

k2

k1

p− k2

p− k2 − k1

q +
∑
i ki − ∑

i li l1 − k1 l2 − k2

p′ l1 l2

p

k2

k1

p− k1

p− k1 − k2

q +
∑
i ki − ∑

i li l1 − k1 l2 − k2

p′ l1 l2

Figure 10. Relevant diagrams for the emission of 2 gluons.

give rise to a large logarithm. Thus the relevant diagrams are those with both gluons emit-

ted at x− < 0, shown in figure 10. Let us consider the first of these diagrams, and define:





p′− = z1z2p
−

l−2 = (1− z2)p−

l−1 = z2(1− z1)p− .
(C.1)

Computing this amplitude using the Feynman rules and going into the impact param-

eter representation, we findM(l2l1) = −8p′−(igs)
2 M

(l2l1)
ij ε1iε2j , with:

M
(l2l1)
ij =

∫
d2k1

(2π)2
d2k2

(2π)2
k2j

(k2)2

(
1

1−z1
k1 + k2

)

i(
1

1−z1
k1

2 + 1−z2+z1z2

1−z2
k2

2 + 2k1 · k2

)

×I(z1z2p−,q+k1+k2−l1−l2) I(z2(1− z1)p−, l1 − k1) I((1− z2)p−, l2 − k2)

≡ − 1

(2π)2

∫
d2x d2y1 d

2y2

(x− y1)i

|x− y1|2
(x− y2)j +B(x− y1)j

|(x− y2) +B(x− y1)|2 +A|x− y1|2

×e−i(q−l1−l2).x+iz1z2
p−

2
Φ(x)e−il1.y1+iz1(1−z2) p−

2
Φ(y1)e−il2.y2+i(1−z2) p−

2
Φ(y2) ,

where A = z1(1 − z1)/(1 − z2), B = 1 − z1. The integrand has the ex-

pected form (three-particle wavefunction in the transverse plane)×(individual eikonal

factors)×(outgoing states).

Let us estimate this amplitude for |q| ≫ |l1|, |l2|. In this limit we will find the double

logarithm associated with PQ→Q(z1)PQ→Q(z2), while in the other regions there are those

associated with splittings into gluons. Now, the integral in x is dominated by values much

smaller than those dominating the integrals in y1 and y2. Neglecting x with respect to y1
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and y2, we obtain:

M
(l2l1)
ij ≃ I(z1z2p−,q)

1

(2π)2

∫
d2y1

y1i

(y1)2
e−il1y1e

iz2(1−z1)
“

bc
|y1|

”n

× 1

(2π)2

∫
d2y2

y2j +By1j

(y2 +By1)2 +Ay1
2
e−il2y2e

i(1−z2)
“

bc
|y2|

”n

. (C.2)

A double logarithm can be obtained only if the amplitude behaves like |Mij | ∼ 1
|l1|

1
|l2|

.

In turn, this means that we must look for the situation in which the integrand behaves like
y1i

|y1|2
y2j

|y2|2
, which is true only if the y1 integral is dominated by much smaller values than

those dominating the y2 integral. This will happen if and only if |l1| ≫ |l2|. We conclude

that the gluon emitted closer to the shock wave must have a larger transverse momentum.

We will come back to this later, when we generalize to an arbitrary number of gluons.

Thus for |l1| ≫ |l2|, we can neglect y1 with respect to y2 in the integrand, and the

last integral factorizes giving:

M
(l2l1)
ij ≃ I(z1z2p−,q) fi(l

−
1 ,l1) fj(l

−
2 ,l2) (|l1| ≫ |l2|) ,

where fi is the gluon emission factor introduced in eq. (5.9). After squaring and integrating

in l1 and l2, this gives a double logarithm of µF (q).

For completeness let us verify explicitly that the contribution from the region |l1| ≪ |l2|
is subdominant. One can show that the amplitude depends on l1 and l2 as follows:

M
(l2l1)
ij ∝





l2j l2i

|l2|4
if |l1| ≪ |l2| ≪ b−1

c

b
n

n+1
c

(
1
|l2|

)1+ 1

n+1

log

(
|l2|

1
n+1

|l1| b
n

n+1
c

)
if |l1| ≪ b−1

c ≪ |l2|

l1il1j

|l1|4

(
|l1|
|l2|

) 1

n+1

if b−1
c ≪ |l1| ≪ |l2|

.

It is immediate to see that from each of the three regions we only get single logarithms.

Thus, the region |l2| < |l1| < |q| dominates, and in the LLA we get:
∫ ∫

d2l1d
2l2|M(l2l1)

ij |2 ≈ 1

2
|I(z1z2p−,q)|2

{
π log

µF (q)2

µ2

}2

,

where the 1
2 factor comes from the θ(|l1| − |l2|).

The second diagram in figure 10 is the same with l1 ↔ l2. Since the leading contribu-

tions come from integration over different regions of transverse momenta, in the LLA there

is no interference between the two diagrams. Putting all together and including also the

double logarithms arising from the regions |q| ≫ |q− l1|, |l2| and |q| ≫ |l1|, |q− l2|, which

can be computed in a similar way, we finally obtain:

dσ̂NLO

d2q dz1dz2
≃ 1

4π2

{∣∣Ĩ(z1z2p−,q)
∣∣2PQ→Q(z1)PQ→Q(z2)

+
∣∣Ĩ((1− z2)p−,q)

∣∣2PQ→g(1− z2)PQ→Q(z1)

+
∣∣Ĩ(z2(1− z1)p−,q)

∣∣2PQ→g(1− z1)PQ→Q(z2)
} 1

2!

[
αs

2π
log

µ2
F (q)

µ2

]2

.

which shows that the optimal factorization scale is µF (q).
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p

km−1

km

p− km

p− km − ...− k1

q +
∑

i ki − ∑
i li lm − km

p′ lm

lm−1 − km−1

lm−1

l1 − k1

l1

p− km − km−1

k1

Figure 11. Typical relevant diagram for the emission of m gluons.

Generalization to an arbitrary number m of emitted gluons is straightforward. Con-

sider the typical relevant diagram shown in figure 11, and let us look at the transverse

momenta involved in the quark-gluon vertices. In the first one from below only km ap-

pears, thus the contribution to the amplitude will be km· εm

|km|2
, like in the case of one gluon

emission. In the next vertex both km and km−1 are involved, but it is obvious that its

contribution should reduce to
km−1· εm−1

|km−1|2
when |km| ≪ |km−1|. This is true for all the m

vertices: if the transverse momentum k of a gluon is much larger than those of the gluons

which were emitted previously, then its contribution to the amplitude will be k· ε

|k|2
. Thus in

general we can write, for the diagram in figure 11:

M (lm ... l1) = −2m+1p′−(igs)
m M

(lm ... l1)
i1 ... im

m∏

j=1

(εj)ij ,

where:

M
(lm ... l1)
i1 ... im

=

∫ 


m∏

j=1

d2kj

(2π)2







m∏

j=1

(
kj +

∑
r>j O (kr)

)

ij

kj
2 +

∑
r>j O (kj · kr) +

∑
r,s>j O (ks · kr)




× I


z1z2p−,q +

m∑

j=1

(kj − lj)


 ×




m∏

j=1

I
(
l−j , lj − kj

)

 .

Fourier-transforming this expression and considering the limit |q| ≫ |lj| (j = 1, . . . ,m), we

would obtain an expression analogous to (C.2) with m integrals instead of two. From the
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structure of the amplitude in k space, it is clear that it will be:

M
(lm ... l1)
i1 ... im

≃ I(z1z2p−,q)
1

(2π)2m

∫ 


m∏

j=1

d2yj e
−iljyj e

i
l
−
j

p−

„

bc
|yj|

«n

Ψ(y1, . . . ,ym) ,

where the multi-particle wavefunction Ψ:

Ψ(y1, . . . ,ym) ≃
m∏

j=1

(yj)ij

(yj)2
if |y1| ≪ |y2| ≪ . . .≪ |ym| .

This means that the only term with mth power of a large logarithm comes from the region

|l1| ≫ |l2| ≫ . . .≫ |lm|. When computing the total cross section with m identical gluons

in the final state, we can always reorder the gluons so that |l1| > |l2| > . . . > |lm|. Then in

the LLA only the shown diagram contributes, with a 1
m! factor from θ(|lclose| > . . . > |lfar|).

Putting all together, we get

dσ̂NLO

d2q
≃ 1

4π2

∣∣Ĩ


p−

m∏

j=1

zj ,q


∣∣2

m∏

j=1

PQ→Q (zj) dzj
1

m!

[
αs

2π
log

µ2
F (q)

µ2

]m

,

where:

zj = 1−
m∑

i=j

l−i /p
−.

All these large logarithms are absorbed into the PDF normalized at the scale µF (|q|).
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